Curie Drivers Ed Hours
Pass your permit & drivers license exam w/ DriversEd.com! We've been teaching drivers ed online for over 20 years. Certified instructors guide your in-car driving lessons. Classes available on web or app. State licensed. Take a look at us. California Driver Ed Course provides driver education for teens applying for a provisional learner's permit. The course is 100% online and DMV-approved.
Curie | |
---|---|
A sample of radium, the element which was used in the original definition of the curie. | |
General information | |
Unit of | Specific activity |
Symbol | Ci |
Named after | Pierre Curie |
Conversions | |
1 Ci in .. | .. is equal to .. |
rutherfords | 37000Rd |
SI derived unit | 37 GBq |
SI base unit | 3.7×1010s−1 |
The curie (symbol Ci) is a non-SI unit of radioactivity originally defined in 1910. According to a notice in Nature at the time, it was named in honour of Pierre Curie,[1] but was considered at least by some to be in honour of Marie Curie as well.[2]
It was originally defined as 'the quantity or mass of radium emanation in equilibrium with one gram of radium (element)' [1] but is currently defined as 1 Ci = 3.7×1010decays per second after more accurate measurements of the activity of 226Ra (which has a specific activity of 3.66×1010 Bq/g[3]).
In 1975 the General Conference on Weights and Measures gave the becquerel (Bq), defined as one nuclear decay per second, official status as the SI unit of activity.[4] Therefore:
- 1 Ci = 3.7×1010 Bq = 37 GBq
and
- 1 Bq ≅ 2.703×10−11 Ci ≅ 27 pCi
While its continued use is discouraged by National Institute of Standards and Technology (NIST)[5] and other bodies, the curie is still widely used throughout government, industry and medicine in the United States and in other countries.
At the 1910 meeting which originally defined the curie, it was proposed to make it equivalent to 10 nanograms of radium (a practical amount). But Marie Curie, after initially accepting this, changed her mind and insisted on one gram of radium. According to Bertram Boltwood, Marie Curie thought that 'the use of the name 'curie' for so infinitesimally small [a] quantity of anything was altogether inappropriate.'[2]
The power in milliwatts emitted by one curie of radiation can be calculated by taking the number of MeV for the radiation times approximately 5.93.
A radiotherapy machine may have roughly 1000 Ci of a radioisotope such as caesium-137 or cobalt-60. This quantity of radioactivity can produce serious health effects with only a few minutes of close-range, unshielded exposure.
Ingesting even a millicurie is usually fatal (unless it is a very short-lived isotope). For example, the median lethal dose (LD-50) for ingested polonium-210 is 240 μCi; about 53.5 nanograms.
The typical human body contains roughly 0.1 μCi (14 mg) of naturally occurring potassium-40. A human body containing 16 kg of carbon (see Composition of the human body) would also have about 24 nanograms or 0.1 μCi of carbon-14. Together, these would result in a total of approximately 0.2 μCi or 7400 decays per second inside the person's body (mostly from beta decay but some from gamma decay).
As a measure of quantity[edit]
Units of activity (the curie and the becquerel) also refer to a quantity of radioactive atoms. Because the probability of decay is a fixed physical quantity, for a known number of atoms of a particular radionuclide, a predictable number will decay in a given time. The number of decays that will occur in one second in one gram of atoms of a particular radionuclide is known as the specific activity of that radionuclide.
The activity of a sample decreases with time because of decay.
The rules of radioactive decay may be used to convert activity to an actual number of atoms. They state that 1 Ci of radioactive atoms would follow the expression:
- N (atoms) × λ (s−1) = 1 Ci = 3.7 × 1010 Bq
and so,
- N = 3.7 × 1010 Bq / λ,
where λ is the decay constant in s−1.
We can also express activity in moles:
where NA is Avogadro's number and t1/2 is the half life. The number of moles may be converted to grams by multiplying by the atomic mass.
Here are some examples, ordered by half-life:
Isotope | Half life | Mass of 1 curie | Specific activity (Ci/g) |
---|---|---|---|
232Th | 1.405×1010 years | 9.1 tonnes | 1.1×10−7 (110,000 pCi/g, 0.11 µCi/g) |
238U | 4.471×109 years | 2.977 tonnes | 3.4×10−7 (340,000 pCi/g, 0.34 µCi/g) |
40K | 1.25×109 years | 140 kg | 7.1×10−6 (7,100,000 pCi/g, 7.1 µCi/g) |
235U | 7.038×108 years | 463 kg | 2.2×10−6 (2,160,000 pCi/g, 2.2 µCi/g) |
129I | 15.7×106 years | 5.66 kg | 0.00018 |
99Tc | 211×103 years | 58 g | 0.017 |
239Pu | 24.11×103 years | 16 g | 0.063 |
240Pu | 6563 years | 4.4 g | 0.23 |
14C | 5730 years | 0.22 g | 4.5 |
226Ra | 1601 years | 1.01 g | 0.99 |
241Am | 432.6 years | 0.29 g | 3.43 |
238Pu | 88 years | 59 mg | 17 |
137Cs | 30.17 years | 12 mg | 83 |
90Sr | 28.8 years | 7.2 mg | 139 |
241Pu | 14 years | 9.4 mg | 106 |
3H | 12.32 years | 104 μg | 9,621 |
228Ra | 5.75 years | 3.67 mg | 273 |
60Co | 1925 days | 883 μg | 1,132 |
210Po | 138 days | 223 μg | 4,484 |
131I | 8.02 days | 8 μg | 125,000 |
123I | 13 hours | 518 ng | 1,930,000 |
212Pb | 10.64 hours | 719 ng | 1,390,000 |
Radiation related quantities[edit]
The following table shows radiation quantities in SI and non-SI units:
Quantity | Unit | Symbol | Derivation | Year | SI equivalence |
---|---|---|---|---|---|
Activity (A) | becquerel | Bq | s−1 | 1974 | SI unit |
curie | Ci | 3.7 × 1010 s−1 | 1953 | 3.7×1010 Bq | |
rutherford | Rd | 106 s−1 | 1946 | 1,000,000 Bq | |
Exposure (X) | coulomb per kilogram | C/kg | C⋅kg−1 of air | 1974 | SI unit |
röntgen | R | esu / 0.001293 g of air | 1928 | 2.58 × 10−4 C/kg | |
Absorbed dose (D) | gray | Gy | J⋅kg−1 | 1974 | SI unit |
erg per gram | erg/g | erg⋅g−1 | 1950 | 1.0 × 10−4 Gy | |
rad | rad | 100 erg⋅g−1 | 1953 | 0.010 Gy | |
Dose equivalent (H) | sievert | Sv | J⋅kg−1 × WR | 1977 | SI unit |
röntgen equivalent man | rem | 100 erg⋅g−1 | 1971 | 0.010 Sv |
See also[edit]
References[edit]
- ^ abRutherford, Ernest (6 October 1910). 'Radium Standards and Nomenclature'. Nature. 84 (2136): 430–431. Bibcode:1910Natur.84.430R. doi:10.1038/084430a0.
- ^ abFrame, Paul (1996). 'How the Curie Came to Be'. Health Physics Society newsletter. Retrieved 3 July 2015.
- ^Delacroix, D (2002). Radionuclide and Radiation Protection Data Handbook 2002. Radiation Protection Dosimetry, Vol. 98 No 1: Nuclear Technology Publishing. p. 147.
- ^'SI units for ionizing radiation: becquerel'. Resolutions of the 15th CGPM (Resolution 8). 1975. Retrieved 3 July 2015.
- ^'Nist Special Publication 811, paragraph 5.2'. NIST. Retrieved 22 March 2016.
(b. Warsaw, Poland, 7 November 1867; d. Sancellemoz, France, 4 July 1934)
physics.
Maria’s parents, descendants of Catholic landowners, were intellectuals held in poor esteem by the Russian authorities. Her father, Wladyslaw, a former student at the University of Saint Petersburg (now Leningrad), taught mathematics and physics in a government secondary school in Warsaw. Her mother, the former Bronislawa Boguska, managed a private boarding school for girls on Freta Street1 when Maria, her fifth child, was born. The mother subsequently contracted tuberculosis and gave up all professional activity. Misfortune struck the family again in 1876, when Sophia, the eldest child, died of typhus; in 1878 the mother died.
Denied lucrative teaching posts for political reasons, Professor Sklodowski decided, after moving several times, to take in boarders at his home on Leschno Street, Maria, known familiarly as Manya, gave up her room and slept in the living room; she worked there late at night and put everything in order before the boarders had their breakfast. A gold medal for excellence crowned her brilliant high school studies—in Russian—but her health was weakened (1883). A year in the country with her uncle Sklodowski, a notary in Skalbmierz, near the Galician border, restored her. During this period she formed her profound attachment to nature and to country people.
Upon her return Maria gave lessons to earn money. She was a passionate adherent of clandestine movements supporting Polish political positivism and participated in the activities of an underground university—progressive and anticlerical—whose journal, Prauda, preached the cult of science. Maria read everything in the original: Dostoevsky and Karl Marx, the French, German, and Polish poets; sometimes she even tried her hand at poetry.
In order that her sister Bronia might study in Paris—for France was the land of liberty of which they both dreamed—Maria became a governess (1 January 1886) in the home of M. Zorawski, administrator of the rich estate of the princes Czartoryski (in Szezuki, near Pzasnysz, Plock district, about sixty miles north of Warsaw).
Moved by the poverty and ignorance of the peasant children, Maria gave them lessons after the seven hours devoted to the education of two of her employer’s daughters; she also read many of the books in his scientific library. During the summer Casimir, the Zorawski’s eldest son, a mathematics student at the University of Warsaw, fell in love with her. His family firmly opposed the marriage, however, because Maria was a governess. Although disillusioned, Maria remained with the Zorawskis until the end of her contract (Easter 1889), nearly three years more. Back in Warsaw she again became a governess, dividing her leisure time between her family, the “flying” university, and chemistry. Her cousin Boguski, a former assistant to Mendeleev and director of. the modest laboratory of the Museum of Industry and Commerce, entrusted her to Napoleon Milcer, who had studied under Bunsen.
Meanwhile, Bronia, now a medical doctor, had married Casimir Dluski, also a doctor. They insisted that Maria come to Paris and stay with them. She hesitated, then left with her meager savings (1891). She crossed Germany by train, traveling fourth class, seated on a camp stool. Although her relatives (who lived on the Right Bank) welcomed her warmly, Maria, in order to work as she pleased, preferred to live alone in a modest room 2 and content herself with scanty meals. She received an Alexandrovitch Scholarship, which she fully repaid. She passed the licence in physics—on 28 July 1893, ranking first, with high honors—and the licence in mathematics—on 28 July 1894, with honors, ranking second. Her professors, Paul Appell and Edmond Bouty, took notice of her gifts and her enthusiasm; and Gabriel Lippmann opened his laboratory to her.
Maria met Pierre Curie in April 1894 at the home of a Polish physicist named Kowalski. A lively sympathy brought them together and then a deep affection developed. Pierre proposed to her, but before committing herself, she went to Poland to spend the summer near her friends and family. Their correspondence during the summer was conclusive; Maria returned in October having decided to marry Pierre.
Bronia gave her a room at 39 rue de Châteaudun. There she completed the memoir on her first experimental work, “Sur les proproétés magnétiques des aciers trempés,” which Le Chatelier had asked her to write for the Société pour I’Encouragement de I’In dustrie Nationale; Pierre advised her on it. She attended Pierre’s thesis presentation in March 1895, and on 26 July they were married. On 12 September 1897 their daughter Irène was born in their modest apartment, 24 rue de la Glacière.3 A little later they moved to 108 boulevard Kellermann, a building since destroyed. 4
Meanwhile, Marie had placed first on the women’s agrégation in physics (15 August 1896). She was looking for a thesis topic while visiting Pierre’s laboratory at the École de Physique et Chimie and occasionally working with him; the director, Paul Schützenberger, welcomed her warmly.
She already shared in the intense excitement of the scientific world: Roentgen had just discovered invisible rays capable of traversing opaque bodies of varying thicknesses, of exposing photographic plates, and of making the air more conductive. Were they really rays? A respected scientist, Henri Poincaré, had advanced in January 1896 the hypothesis of an emission, called “hyperfluorescence,” from the glass wall of a Crookes tube struck by cathode rays. Meanwhile Henri Becquerel, at the Muséum d’Histoire Naturelle, discovered that uranium salts shielded from light for several months spontaneously emit rays related in their effects to Roentgen rays (X rays).5 Mme. Curie became enthusiastic about this subject filled with the unknown and, as she later acknowledged, involving no bibliographic research.
The first step in the research was to determine whether there existed other elements capable, like uranium, of emitting radiation. Abandoning the idea of hyperfluorescence, couldn’t one calculate by electrical measurement the effects on the conductivity of air that were revealed by the gold-leaf electroscope? Pierre Curie and his brother Jacques had constructed an extremely sensitive apparatus to measure weak currents; Mme. Curie employed it in testing both pure substances and various ores. In her first “Note” in the Comptes rendus…de l Académie des sciences (12 April 1898) she described the method that she followed throughout her life, the method that enabled her to make comparisons through time and crosschecks with other techniques:
I employed… a plate condenser, one of the plates being covered with a uniform layer of uranium or of another finely pulverized substance [(diameter of the plates, eight centimeters; distance between them, three centimeters). A potential difference of 100 volts was established between the plates.]. The current that traversed the condenser was measured in absolute value by means of an electrometer and a piezoelectric quartz.
In general she preferred the zero method, in which the operator compensates for the current created by the active material by manipulating the quartz. All of her students followed this procedure.
The first results came in 1898: the measurements varied between 83 × 10-12 amperes for pitch blende to less than 0.3 × 10-12 for almost inactive salts, passing through 53 × 10-12 for thorium oxide and for chalcolite (double phosphate of uranium and copper). Thorium would thus be “radioactive” (the term is Mme. Curie’s; its radioactive properties were discovered at the same time, independently, by Schmidt in Germany. The same “Note” contained a fundamental observation: “Two uranium ores…are much more active than uranium itself. This fact…leads one to believe that these ores may contain an element much more active than uranium.”
The second stage of the research was to prove that an imponderable mass of an unknown element, too minute to yield an optical spectrum, could be the source of measurable and characteristic effects, whatever the composition of the compound of which it was a part. Mme. Curie showed the strength of her character: She foresaw the immense labor necessary in attempting to concentrate the active substance and the small means at her disposal; and yet she plunged into the adventure. Pierre shared her faith and abandoned—temporarily, he thought—his own research. He participated in the laborious chemical treatments as well as in the physical measurements of the products (of various concentrations), which were then compared with a sample of uranium.
It was already known that natural pitchblende is three or four times more active than uranium: after suitable chemical treatment the product obtained is 400 times more active and undoubtedly contains “a metal not yet determined, similar to bismuth… We propose to call it polonium, from the name of the homeland of one of us” (“Note” by M. and P. Curie, Comptes rendus…de l’Académie des sciences [18 July 1898]). However, the eminent spectroscopist Eugène Demarçay discerned no new lines; and it was necessary to procure more of the ore. Eduard Suess of the University of Vienna, a correspondent of the Institut de France, interceded with the Austrian government; and 100 kilograms were offered to the Curies. A third “Note” followed, signed also by Bémont, Pierre’s assistant at the école de Physique et Chimie: “We have found a second radioactive subtance, entirely different from the first in its chemical properties,…[which are] similar to those of barium” (Comptes rendus…de I’Académie des sciences [November 1898]). The substance was radium. This time Demarcay observed a new line in the spectrum; confirmation of both the technique of measurement and of the discoveries was in sight.
To make the confirmation irrefutable, still more primary material and treatments were necessary; and André Debierne assisted them. Mme. Curie wrote simply: “I submitted to a fractionated crystallization two kilograms of purified radium-bearing barium chloride that had been extracted from half a [metric] ton of residues of uranium oxide ore.” The currents reached 10-7 amperes, and the substances obtained were 7,500 times more active than uranium (1899). A few months later they were 100,000 times more active.
The research not only accelerated but also became diversified. Pierre Curie studied the radiations; Marie tried to isolate the polonium, without success, and to determine the atomic weight of radium; Debierne discovered actinium. In Mme. Curie’s words:
None of the new radioactive substances has yet been isolated. To believe in the possibility of their isolation amounts to admitting that they are new elements. It is this opinion that has guided our work from the beginning: it was based on the evident atomic character of the radioactivity of the materials that were the object of our study… This tenacious property, which could not at all be destroyed by the great number of chemical reactions we carried out, which, in comparable reactions, always followed the same path, and manifested itself with an intensity clearly related to the quantity of inactive material retrieved,…must be an absolutely essential character of the material itself (1900).
They were reasoning as chemists: the physicist’s atom was still in limbo, although the connection between electricity and matter was being revealed, beginning with the electrons, which might be subatomic particles. J. J. Thomson located electrons in a solid sphere, while Jean Perrin imagined that their paths form a sort of miniature solar system (1901).
What slowed the interpretation of the phenomenon of radioactivity, as even Mme. Curie herself acknowledged, was the experimental datum that the radiant activity of uranium, thorium, radium, and probably also of actinium was constant. It is true that the activity of polonium was found to diminish, but Mme. Curie viewed this as an exception (1902). Although since January 1899 the Curies had considered, among other hypotheses, the instability of radioactive substances, their complete faith in experiment prevented them from following Rutherford along the same lines in 1903. If Rutherford and Soddy were right, every radioactive substance would destroy itself according to an exponential law but with a different period of decay. Thus the gaseous emanation of radium would result from the destruction of radium and would destroy itself, producing helium and other substances of a radioactive character. To account for the apparent stability of radium, Rutherford suggested a very long period of decay. This Mme. Curie was not ready to accept until experimental proof had been obtained that radium did not act “on its surroundings (nearby material atoms or the ether in a vacuum) in such a way that it produces atomic transformations…. Radium itself would then no longer be an element in the process of being destroyed.” However, in 1902 Mme. Curie had isolated a decigram of pure radium and, after great difficulties, determined its atomic weight for the first time, 225 (instead of the presently recognized value, 226). This success brought her the Berthelot Medal of the Académie des Sciences and, for the third time, the Gegner Prize (1902).
But Pierre Curie’s meager salary could not support the household and the research; Marie, even before defending her thesis (1903), took a position as lecturer in physics at the École Normale Supérieure in Sèvres (October 1900). There girls who had passed a competitive examination prepared for the agrégation. No woman had taught there before, and her lecture experiments assured her success.
Life was hard; then came international recognition of their work. Marie attended Pierre’s lecture in London at the Royal Institution in May 1903 and, on 5 November, shared with him the Humphry Davy Medal awarded by the Royal Society. The Nobel Prize for physics was awarded jointly to the Curies and to Henri Becquerel for the discovery of radioactivity (12 December 1903), although, because of weakened health, they did not go to Stockholm to receive it until 6 June 1905. This was followed by many other honors, including the Elliott Cresson Medal in 1909.
Rather than making them happy, this recognition overwhelmed the Curies with solicitations and correspondence that took too much of their time and drained their strength. The Curies denounced “the burden of fame'; their bicycle rides became less frequent and their vacations shorter. On 1 November 1904, a month before the birth of their daughter Eve (6 December), Marie was finally named Pierre’s assistant at the Faculté des Sciences, where she had long been working without pay. In 1906 Pierre, at last a member of the Académie des Sciences, presented a “Note” on the period of decay of polonium (140 days), to which Marie applied, for the first time. the Ruther-ford-Soddy exponential law. She proved, as had these two scientists, the release of helium. Nevertheless, many difficulties remained in interpreting the experimental results: the emanation (radon), induced radioactivity, and radioactive deposits that were more or less short-lived. The situation was further confused, theoretically, by the Curies’ observation that “Every atom of a radioactive body functions as a constant source of energy… which implies a revision of the principles of conservation.” The scientists pondered; the press exclaimed, “with radium the Curies have discovered perpetual motion!”
Mme. Curie then stated the policies of her research, to which she always remained faithful; push to the extreme the precision and rigor of measurement; obtain samples that are pure or of maximum concentration, even at the cost of handling enormous quantities of raw materials; and put forth general laws only in the complete absence of exceptions.
A French industrialist, Armet de L’Isle, confident that there was a future for medical and industrial applications of radium, constructed a factory in Nogent-sur-Marne, on the outskirts of Paris, for the extraction of radium from pitchblende residues. In 1904 Debierne installed a section there that prepared the materials needed in the laboratory. The Curies claimed no royalties and refused to take out any patents; they deliberately renounced a fortune, as they had declined a very favorable offer from the University of Geneva in 1900. They remained in France and gave free advice to anyone who asked for it.
Following Pierre’s death in April 1906, Marie became a different woman, even with her closest friends; she lost her gaiety and warmth and became distant. Her one thought was to continue: to raise her daughters, even to giving them their daily bath, a task she never entrusted to anyone else; and to go on in the laboratory as if Pierre were still there. Learn japanese rpg kanji for love. Had he not once said to her, “Whatever happens, even if one were to be like a body without a soul, one must work just the same”?
The Ministry of public Education thought to do her a kindness by offering her a pension, as they had done for Pasteur’s widow. She refused; since she was still able to work, why deprive her of that? Surprised, the Faculty Council decided, unanimously, to maintain the chair of physics created for Pierre in 1904 and bestowed it on Marie (1 May 1906). She was confirmed in 1908. For the first time a woman taught at the Sorbonne.
Mme. Curie compelled recognition from her first lecture (5 November 1906), despite her timidity, the emotion she was concealing, her weak voice, and her monotone delivery. She made no introductory remarks, took no notice of the sightseers mingling with the students, and began her lecture with the last sentence that Pierre had spoken in that very place. In every demonstration experiment she watched the result with as much interest as if she did not already know it.
The vocabulary had grown considerably since her thesis; the dissymmetry between the negative charges (electrons), independent of any atomic material, and the positive charges, linked with the material atoms, was obvious. She introduced the terms “disintegration” and “transmutation” and described the advantages of the theory of radioactive transformations. Nevertheless, she included a reservation: “It seems useful to me not to lose sight of the other explanations of radioactivity that may be proposed.”
The smallness of the laboratory on the rue Cuvier permitted Marie to have only five or six researchers. Among them were Duane and Stark (two of the first Carnegie Scholars) in 1907 and Ellen Gleditsch in 1908. They fixed standards of measurement, verified that external agents have no effect on radioactivity, and studied the effect of emanation in the formation or condensation of clouds in closed chambers.
Mme. Curie’s treatise on radioactivity (1910) admitted, without reservations, the theory of transformations; and in a series of general articles written between 1911 and 1914 she described its consequences. By its nature the phenomenon of radioactivity substantiated the connection between matter and electricity; the causes of the explosion occurring each time an atom emits radiation and is transformed into another product remained to be discovered.6
As had pierre in 1903, Marie Curie declined the Legion of Honor (November 1910), asking only the means to work. Again like Pierre, she yielded to the pleas of their friends and presented herself to the Académie des Sciences. The leading candidate, on the basis of Lippmann’s recommendation, she was passed over (23 November 1911) for Branly after a slanderous newspaper campaign. She did not seem at all affected because she had been rejected for extrascientific reasons.
While the creation of a radium institute was in view, through an agreement between the Faculté des Sciences (basic research) and the Institute Pasteur (medical application), Mme. Curie raised the question of official standards for radium at the Radiology Congress in Brussels in September 1910.7 A standard was as necessary in research as it was in therapy. She was charged with preparing an ampule containing about twenty milligrams of radium metal, to be deposited with the International Bureau of Weights and Measures in Paris.8 The same Congress defined the curie (named in honor of Pierre), a new unit corresponding to the quantity of emanation (radon) from or in radioactive equilibrium with one gram of radium. (This definition was redefined in 1953 as the quantity of any radioactive nuclide in which the number of disintegrations per second is 3.700 × 10 10.)
In 1911 the Nobel Prize for chemistry was awarded to Mme. Curie “for her services to the advancement of chemistry by the discovery of the elements radium and polonium,” the first time that a scientist had received such an award twice. The major portion of the prize money went directly to research and to friends. At this time her health was impaired; she left the house in Sceaux, 6 rue du Chemin-de-fer, where she had lived since 1906, and moved closer to her laboratory, to 36 quai de Bethune.
In 1913 Mme. Curie had the pleasure of inaugurating the radioactivity pavilion in Warsaw. In January 1914 the Conseil de I’Institut du Radium was formed; she was a member, along with Appell, dean of the Faculté de Sciences; Lippmann, assistant to Appell; and the representatives of the Institut Pasteur, its director, Émile Roux and Prof. Claude Regaud. The building was almost finished by July. Pretending not to know of Mme. Curie’s lack of concern with financial matters, the administration constantly made difficulties for her, whether it was a question of dealing with industry or the Service de Mesure, taking inventory of supplies, or importing ores that were subject to taxation.
When World War I broke out, Mme. Curie, after having put her precious gram of radium in safekeeping in Bordeaux (3–4 September), aided the army; the radiological apparatus already used by civilian surgeons was being ignored by military doctors. With the aid of private gifts, she equipped the ambulances that she accompanied to the front lines with portable X-ray apparatus and, on 28 July 1916, she obtained a driver’s license in order not to be dependent on a chauffeur. The Red Cross (Union des Femmes Françaises) officially made her the head of its Radiological Service, and the Patronage National des Blessés allocated her funds to increase the number of radiological installations to 140. With her daughter Irène, who became her first experimental assistant, and Marthe Klein (later Mme. Pierre Weiss), she created accelerated courses in radiology for medical orderlies and taught doctors the new methods of locating foreign objects in the human body. Later (1920) she wrote La radiologie et la guerre from her wartime notes.
The Radium Institute began to function. In 1918 Mme. Curie reported to the Committee on Radioactive Substances of the Ministry of Munitions on the radioelements, their role, and their applications. With the return of peace, she finally installed herself at the Institute. Irène, officially named as her préparateur, assisted her particularly in the special courses designed for members of the American Expeditionary Force.
American women were so moved by Mme. Curie’s talent and generosity that they opened a national subscription to offer her a gram of radium on the appeal of a journalist, Mrs. Meloney. In May 1921 Mme, Curie made a triumphal visit to the United States with her daughters; she received from President Harding the gold key to the case holding the precious substance. Despite her fatigue and her distaste for display, Mme. Curie was deeply moved by this gesture, and perhaps even more so when it was repeated in 1929 for the benefit of the radium therapy services of Warsaw. The inauguration, on 29 May 1932, of the Maria Sklodowska-Curie Radium Institute (which provided facilities for the treatment of patients) was the occasion for her last trip outside France.
The creation of the Curie Foundation (1920), which was empowered to receive private gifts, and her election to the Académic de Médicine in 1922 assured Mme. Curie contact with the medical profession for two goals that Pierre had cherished: the development of what had come to be called “curietherapy” and the establishment of safety standards for workers. (See her book Pierre Curie.)
She was invited by Sir Eric Drummond, secretary general of the League of Nations, to sit on the International Commission for Intellectual Cooperation (17 May 1922) and became its vice-president. She concerned herself with increasing the number of available postgraduate scholarships and with requiring from authors a résumé of their scientific memoirs in order to speed the publication of abstracts. However, the length of discussions on minor subjects, such as standardizing the format of periodicals, sometimes exasperated her.
Her daughter Eve (later Mrs. Henry Labouisse), who devoted herself to literature and music, sometimes took her mother to the theater; Mme. Curie interested herself in all creative endeavors. She followed the work of Sacha Pitoëff (in the 1920’s and 1930’s) and fostered that of the choreographer Loië Fuller (in the early 1900’s). During vacations she swam and took long nature walks. Mme. Curie closely supervised the work of her collaborators at the Radium Institute. They were of many nationalities, by 1933 numbering seventeen, and their work led from success to success. Iréne Curie completed a thesis on the α rays of polonium in 1925. Then Fernand Holweck, using a pump of his own design, studied X Rays in the region of maximal absorption and established the relationship between those rays and light. Although it had long been appreciated that X rays and light are of the same nature, no one had succeeded in obtaining a sufficiently complete vacuum to detect X rays of long wavelength. Fernand Holweck’s pump, which depended on a technique for soldering glass to metal, made this possible. Salomon Rosenblum, a Curie Scholar, employed Bellevue’s powerful electromagnet and discovered the fine structure of the spectrum of the α rays. The discovery of artificial radioactivity by Irène Curie and her husband, Frédéric Joliot, followed in 1933. It was like an echo of Mme. Curie’s first ideas on the influence of the radioelements on their environment. At the same time that she was composing a second treatise on radioactivity, Mme. Curie, with the help of Mme. Cotelle and Mlle. Chamié, prepared derivatives of actinium that had not yet been isolated, sometimes staying in the laboratory all night.
Her health declined, but she never spoke of it and grumbled about the interruptions in her work imposed by her doctors. The twenty-fifth anniversary of the discovery of radium was celebrated at the Sorbonne between two of her cataract operations: she had four between 1923 and 1930. She also suffered from lesions on her fingers in 1932, the result of handling radium. She was obliged to enter a nursing home in Paris on 6 June 1934; and then, weakened, she was taken to a sanatorium in the French Alps on 29 June. She did not return.
Of all the honors Mme. Curie received, of all the tributes that were paid her, the one that best fits her personality is a book dedicated to her memory by the French Society of Physics on the centenary of her birth: Colloquium on Medium and Heavy Nuclei. The following generations have taken up the torch that she alone had carried for twenty-eight years.
NOTES
1. The house in which Marie was born, in which she lived for only several months, became a laboratory bearing her name.
2. First on rue Flatters, then boulevard de Port-Royal, and finally 11 rue des Feuillantines, in the Latin Quarter.
3. A plaque is affixed there honoring the Curies.
4. A plaque recalls their stay there.
5. “Note,” in Comptesrendus… del’Académic des sciences(23 Nov. 1896).
6. Communication of Mme. Curie to the Conseil de Physique, Solvay (Brussels, 1911).
7. She had discovered a method of determining the quantity of radium from the radiation emitted (Le radium, 7, 65).
Curie Drivers Ed Hours Log Sheet
8. Thanks to generous donations, she was compensated for the material she hérself had given for this purpose.
BIBLIOGRAPHY
I Original Works. All of Marie Curie’s original memories and a few of her general articles have been collected in a single volume by Irène Joliot-Curie: Oeuvres de Marie Sklodowska-Curie(Warsaw, 1954). The following works in particular should be mentioned: Recherches sur les substances radioactives, 2nd ed.(Paris, 1904), her thesis; Les théories modernes relatives à l’électriciteé et à la matière, the opening lecture of her physics course, 5 Nov. 1906; “Les mesures en radioactivité et l’étalon du radium.” in Journalde physique, 2 (1912), 715; Sur les rayonnements des corps radioactifs (Paris, 1913); and “Les radio-éléments et leur classification,” in Revue du mois (1914).
See also the first Traité de radioactivité, 2 vols. (Paris, 1910); L’isotope et les éléments isotopes (Paris, 1922–1923); Pierre Curie (Paris, 1924), the American ed. of which (New York, 1923) includes a biography of Marie Curie; and Radioactivité, posthumous ed. prepared by Iréne and Frédéreacute;c Joliet, 2 vols. (paris1935).
II. Secondary Literature Among the innumerable articles and books on Marie Curie are J. Christie, “The Discovery of Radium,” in journal of the Franklin Institute, 167, no.5 (May 1909); B. Szilard, Frau Curie and ihr Werk,” in Chemikerzeitung (1911)B. Harrow, Eminent chemists of our Time (New York) Hamilton Foley, “Madame Curie, the Nation’s Guest” and “the Sources of Radium,” in Bulletin of the Pan-American union (July 1921); Debierne, “Le 25e anniversaire de sa découverte du radium, in Chimie et industrie (Mar 1924) Le radium célébration du 25e anniversaire de sa découvere (Paris, 1924); C. Regaud, Marie Sklodowska Curie (Paris, 1934); Lord Rutherford, “Marie Curie in Nature (21 July 1934) L. Wertenstien, in Nature, 141 (18 June 1938), 1079–1081; Eve Curie, Madame Curie (Paris 1939), English trans. by Vincent Sheen (New York -London, 1939); Iréne Joliot-Curie, “Marie Curie, ma mère, “in Europe, 108 (Dec.1954); and Eugénie Cotton, Les Curie et la radioactivité (Paris, 1963).
The ceremonies commemorating the centenary of Mme. Curie’s birth have given rise to numerous publications. The catalog of L’exposition Pierre et Marie Curie (Paris, 1967) contains an exhaustive chronology of the events at the exposition. In addition, the following may be consulted: the special number of the Annals de l’Université (Paris, 1968); Centenary Lectures, A. I. E. A., Warsaw, 17–20 October 1967 (Vienna 1968) and the articles of Marcel Guillot in Nuclear physics, A103 (1967), 1–8; and J. Hurwic, in Colloque Cl, 29, supp. to Journal de physique (Jan. 1968), followed by the reprinting of Mme. Curie’s first “Note.”
Adrienne R. Well